If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x+6=10
We move all terms to the left:
2x^2-7x+6-(10)=0
We add all the numbers together, and all the variables
2x^2-7x-4=0
a = 2; b = -7; c = -4;
Δ = b2-4ac
Δ = -72-4·2·(-4)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-9}{2*2}=\frac{-2}{4} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+9}{2*2}=\frac{16}{4} =4 $
| 0.7x=4 | | 30+.80x=2.30x | | 0.7x−1=3 | | -7x-2(6)=-13 | | 2y-11=-19 | | b+5-4b=-4b+2 | | 15(x-5)=120 | | 12.5+7.25W=32.50+5.25m | | 2(1-x)=x+2 | | 42+2x=5x-49 | | 23x-3=20x=-5x-49 | | 8y-32=5y+7-y | | 3=-5+2x+8 | | 12x+3-13=4(3)+x | | 1/2x+3=x+5 | | y/8-2.3=-27.9 | | 2d−d+2d+5d=16 | | 3+w/7.68=6 | | 1.1=-2.1+2v | | X+49=8x | | (7^(7))/(7^(3))=7^(x) | | 7+y/7=-10.92 | | f/42=13/7 | | -7y+4y=2 | | 4.2=-6w+13.8 | | -2(3a-5)=4(a+3)+8 | | (20x+5)=180 | | -4y-1+9y=-17+6y | | 17c+7c-20c+(-13)+10c=17 | | 2-4.4x=Y | | 8c-5c-c=8 | | 11-a=-1-7a |